If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4^2=6^2
We move all terms to the left:
a^2+4^2-(6^2)=0
We add all the numbers together, and all the variables
a^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 2=10v-8v | | 90+X+37+x+67=180- | | 3+10i=4i- | | 180=2x+5x-54 | | 2(x+3)+3x=46 | | 12x-4=84 | | 2x.5x=160 | | 2h=18 | | u-6.76=8.36 | | 58=c/6+50 | | 5x-10=7x-22 | | G=7/5(p-16) | | 0.3(x-3)=0.3 | | 18=4x–10 | | 42+2s=96 | | 18=2x+5x-54 | | 9+m/4=21 | | 20h+20=175 | | -150=6(8x-1) | | 6(-1/6x)=62/3 | | 8b+5=85 | | 2xx5x=160 | | k-5.1=5.2 | | y+26=39 | | 3x2+3=24 | | Y=-9xY=2x+33 | | -38=8x+2 | | -27.2=8.5x | | s^=196 | | 102=69-7a+3a | | 12=c/3+8 | | 61+57+t=180 |